Глава 10. Разработка, производство, установление характеристик и спецификации моноклональных антител и их производных

Глава 10. Разработка, производство, установление характеристик и спецификации моноклональных антител и их производных

 

1. Введение

 
В настоящей главе рассматриваются требования к качеству моноклональных антител.
Моноклональные антитела – это Ig, характеризующиеся определенной специфичностью, источником получения которых являются линии клеток одного клона. Их биологическая активность проявляется за счет специфичного связывания с соответствующим лигандом (обычно определяемым как антиген) и обусловливает такие эффекторные функции иммунной системы, как антителозависимая клеточная цитотоксичность (ADCC) и комплементзависимая цитотоксичность (CDC).
Моноклональные антитела могут быть получены по технологии рекомбинантной ДНК (рДНК), гибридомной технологии, иммортализацией B-лимфоцитов или с помощью других технологий (например, дисплей-технологии, генетически модифицированные животные).
В настоящей главе изложены принципы и общие требования к разработке, производству, установлению характеристик и спецификации препаратов моноклональных антител, которые применяются в качестве лекарственных препаратов для медицинского применения или использования в их производстве.
 

2. Область применения

 
В настоящей главе рассматриваются вопросы качества при регистрации моноклональных антител, полученных из моноклональной линии клеток, предназначенных для терапевтического и профилактического (в том числе для применения ex vivo), а также для диагностического применения in vivo.
Принципы, изложенные в настоящей главе, применимы к моноклональным антителам, используемым в качестве реагентов, а также к лекарственным препаратам, разработанным на основе моноклональных антител, таким как фрагменты иммуноглобулинов, конъюгаты, гибридные белки и др. Однако использование указанных принципов определяется индивидуально для каждого конкретного препарата с учетом специфики их свойств и будет рассмотрено в отдельных документах.
Поликлональные антитела (фракционированные и рекомбинантные) в настоящей главе не рассматриваются, однако по возможности следует использовать описанные в них принципы.
Настоящая глава не распространяется на:
  • моноклональные антитела, предназначенные для использования in vitro;
  • моноклональные антитела, применяемые в клинических исследованиях.
Однако при производстве и контроле моноклональных антител для клинических исследований необходимо учитывать принципы, описанные в настоящей главе; их применимость будет определяться в индивидуальном порядке.
 

3. Общие положения

 
Настоящая глава неразрывно связана с другими главами настоящих Правил, а также с требованиями Фармакопеи Союза (“Моноклональные антитела для клинического применения”).
 

4. Основные положения

 

4.1. Разработка моноклональных антител

 
Структуру моноклонального антитела необходимо обосновать с учетом механизма действия, биологической активности и стабильности препарата. Обоснование характеристики структуры моноклональных антител должно содержать по крайней мере рассмотрение пригодности иммунохимических свойств иммуноглобулинов (таких как аффинность, перекрестная реактивность, изотип, аллотип), а также важности и сохранности эффекторной функции. Кроме того, необходимо тщательно рассмотреть риск индукции иммунного ответа у пациентов, особенно если препарат не обладает высокой гомологией с иммуноглобулином человека или при выявлении в структуре потенциально иммуногенных эпитопов, поскольку это может привести к клиническим нежелательным реакциям и (или) изменению терапевтического потенциала.
Клеточный субстрат, используемый для получения моноклональных антител, должен представлять собой стабильную, непрерывно культивируемую линию клеток одного клона, разработанную по технологии рекомбинантной ДНК и (или) другим соответствующим технологиям. Основанием для выбора клеточного субстрата является оценка возможности получения продукта желаемого качества по сравнению с возможностью использования других соответствующих подходов.
Если в качестве субстрата используются клетки, полученные по технологии рекомбинантной ДНК, и характеристика системы, используемой для производства антител, должна соответствовать принципам, указанным в главах 1, 2, 5.1 и 5.2 настоящих Правил.
Если до получения моноклональной клеточной линии в ходе разработки осуществляется одна или более специфичных процедур, например, гибридизация клеток, вирусная трансформация, генная библиотека скрининга в фаговом дисплее, использование технологий in silico, in vitro или in vivo, такие методики не требуют подробного описания. Однако необходимо представить достаточный объем сведений об этих процедурах, позволяющий оценить подлинность и чистоту моноклональной клеточной линии, значимых для безопасности и эффективности препарата (например, аминокислотные или посттрансляционные модификации, направленные на модуляцию иммуногенности или эффекторных функций, и сведения о посторонних агентах и потенциальных контаминантах).
Для получения стабильной и непрерывно культивируемой линии клеток, которая будет использована для производства антител может потребоваться иммортализация B-лимфоцитов человека или клеток другого происхождения путем слияния или трансформации клеток. Необходимо тщательно проанализировать выбранный подход с позиций безопасности и эффективности и должным образом обосновать его.
Использование B-лимфоцитов человека в качестве родительских клеточных линий поднимает проблемы, связанные с возможной передачей инфекционных агентов, в том числе агентов вариантной болезни Крейтцфельдта-Якоба, а также других патогенных для человека микроорганизмов. Использование лимфоцитов человека, трансформированных вирусом Эпштейна-Барр (EBV), создает дополнительные трудности в связи с наличием вируса EBV, способного инфицировать человека.
Гибридома, полученная путем гибридизации B-лимфоцитов человека или клеток другого происхождения с миеломными клетками, может быть использована в качестве клеточного субстрата. Происхождение и установление характеристик родительских клеток необходимо подробно описать и документировать, включая информацию о здоровье доноров, использованных партнерах гибридизации и материалах человеческого или животного происхождения, которые соприкасались с клетками (например, питающие клетки и миеломные клетки).
 

4.2. Производство моноклональных антител

 

4.2.1. Общие положения

Процесс производства необходимо должным образом описать и валидировать. Валидация должна по меньшей мере включать в себя:
  • подтверждение того, что процесс способен производить продукт постоянного качества в соответствии с надлежащим образом заданной стратегией контроля качества;
  • оценку производственных возможностей (например, элиминацию производственных примесей, вирусов);
  • подтверждение того, что каждая операционная единица функционирует должным образом (например, валидация очистки колонок, асептическая фасовка).
Внимание должно быть направлено на обеспечение внутрипроизводственного контроля (включая показатели качества промежуточных продуктов и параметры процесса), а также на составление спецификаций на активную фармацевтическую субстанцию и готовый лекарственный препарат. Подобный контроль должен позволять отслеживать значимые показатели качества, такие как родственные соединения и примеси (например, правильность или неправильность дисульфидных связей, дезаминирование, окисление, укорочение, агрегаты) или производственные примеси (например, белки, ДНК, белок A клетки-хозяина, бычья сыворотка, остатки питательных сред), а также релевантные параметры процесса (например, загрузка колонки, pH, температура).
Если белок A используется в процессе очистки, источник белка A (например, S. aureus или рекомбинантный белок) и способ его получения (например, очищенный с использованием IgG человека) должны быть надлежащим образом документированы. Если в производстве использовался IgG человека, необходимо подтвердить, что качество IgG пригодно для целевого назначения, особенно с позиций вирусной безопасности.
 

4.2.2. Платформенное производство

Разработка процессов, используемых для производства моноклональных антител, во многом зависит от знания производителем как продукта, так и процесса производства.
Некоторые производители приобрели значительный опыт в области производства моноклональных антител и разработали стратегию производства, основанную на схожих производственных процессах (то есть с использованием определенных клеток-хозяина, культуры клеток, процессов очистки целевого белка и т.д.). Такой подход часто называют платформенным производством.
Подобно любому другому лекарственному препарату, процесс производства биотехнологического лекарственного препарата, который был разработан с использованием платформенного производства, должен быть валидирован к моменту его регистрации. Исследования по валидации должны включать в себя данные, полученные от конечного процесса производства и производственных площадок, которые будут использоваться для производства лекарственного препарата для реализации. Однако при должном обосновании и документировании в целях обоснования или снижения подаваемого объема данных, полученных по результатам конечного коммерческого процесса, допускается представить в уполномоченные органы государств-членов результаты, полученные на основании иного релевантного опыта.
С учетом того, что показатели качества специфичны для каждого препарата и процесса его производства, необходимо в отношении регистрируемого препарата и процесса отдельно подтвердить пригодность аналитических методов и стратегии контроля качества в целом. Как следствие, необходимо тщательно пересмотреть пригодность стратегии контроля качества, являющейся пригодной для анализа других препаратов, полученных с помощью того же подхода платформенного производства, поскольку она может быть не адаптирована к регистрируемым препарату и процессу. Например, производственные примеси, такие как белки клетки-хозяина (БКХ), высоко зависимы от процесса, и методы контроля, использующиеся в отношении данного препарата и процесса, могут оказаться непригодными для других продуктов, использующих то же платформенное производство (например, различные клеточные субстраты, полученные из общей парентеральной клеточной линии, аналогичные культуры и условия очистки).
При изменении утвержденного процесса, основанного на платформенном производстве, необходимо отдельно проанализировать влияние такого изменения на рассматриваемые препарат и процесс. Тем не менее при должном обосновании и документировании в целях обоснования или снижения подаваемого объема данных, полученных в отношении измененных препарата и процесса, допускается представить результаты, полученные на основании иного релевантного опыта. Более того, если с помощью общего платформенного процесса производства получают несколько препаратов, а изменения (например, оптимизация или улучшение процесса) вводятся лишь в один или несколько из них, необходимо представить обоснование принятой стратегии гармонизации или отсутствия таковой.
 

4.2.3. Вирусная безопасность и трансмиссивная губчатая энцефалопатия

Вопросы вирусной безопасности моноклональных антител, рассматриваемых в настоящей главе, должны соответствовать положениям главы 2 настоящих Правил. Требования, указанные в настоящей главе, касаются моноклональных антител, полученных из гибридомных клеточных линий или генетически модифицированных клеток, продуцирующих моноклональные антитела. Если производство моноклональных антител проводится с использованием животных (например, трансгенных животных или асцитической жидкости), необходимо учитывать требования главы 2 настоящих Правил, в частности приложения N 1 к указанной главе. Исходные клетки (например, клетки-хозяина) должны пройти скрининг на посторонние агенты, то есть на наличие посторонних или эндогенных агентов. Выбор вирусов, которые следует использовать в испытаниях, зависит от вида животных и ткани-источника клеток-продуцентов, а также свойств любого другого биологического сырья, используемого в производстве.
Необходимо в обязательном порядке провести надлежащие валидационные исследования по снижению вирусной нагрузки. В соответствии с главой 2 настоящих Правил, в отношении заявленного на регистрацию лекарственного препарата и его процесса производства необходимо валидировать способность производственных стадий снижать вирусную нагрузку. В целях учета потенциальных и неожиданных препаратспецифичных факторов, влияющих на снижение вирусной нагрузки, подобные валидационные исследования, как правило, проводят с использованием промежуточных продуктов, получаемых в отдельном процессе производства. Тем не менее при должном обосновании и документировании в целях установления и анализа стадий по снижению вирусной нагрузки ценными являются и иные исследования (например, проведенные на основании подхода платформенного производства), которые могут позволить снизить объем подаваемых результатов валидационных исследований. Такие данные можно рассматривать как вспомогательные (например, при изучении потенциального влияния изменяющихся параметров процесса на снижение вирусной нагрузки, свойств колонок после множества производственных циклов, исследований переноса вирусов или исследований по очистке колонок). Во всех случаях производитель должен обосновать значимость таких данных для отдельного продукта. Необходимо представить обоснования возможности использования предварительных собственных данных в отношении нового препарата (например, допустимы ли ссылки на данные по снижению вирусной нагрузки на определенных стадиях процесса, если промежуточный продукт, получаемый на предыдущем этапе, обладает сопоставимыми биохимическими свойствами и подвергается очистке идентичными методами). Производитель должен представить критический анализ производственной стадии, в отношении которой будут использоваться подобные собственные вспомогательные данные, и состава соответствующего промежуточного продукта. По результатам анализа необходимо прийти к однозначному заключению, что в обоих случаях введенная производственная стадия аналогична по способности инактивировать (элиминировать) потенциальные вирусные контаминанты. Если сопоставимость этапов неубедительна или база данных не позволяет исключить препаратспецифичное влияние на способность снижать вирусную нагрузку, необходимо провести подтверждающие циклы, используя препарат-специфичные промежуточные продукты.
Если в разработке или производстве использовались материалы крупного рогатого скота или иных видов животных, источников ТГЭ, необходимо следовать требованиям актов, входящих в право Союза, по минимизации риска передачи агентов губчатой энцефалопатии животных посредством лекарственных препаратов для медицинского применения.
 

4.3. Установление характеристик моноклональные антитела

 
Моноклональные антитела необходимо подробно охарактеризовать. В соответствии с главой 6 настоящих Правил, установление характеристик должно включать в себя определение физико-химических и иммунохимических свойств, биологической активности, чистоты, примесей и количественного содержания моноклональных антител. На момент регистрации лекарственного препарата заявитель должен располагать соответствующим образом охарактеризованными собственными стандартными материалами, которые будут использоваться в биологических и физико-химических испытаниях промышленных серий.
 

4.3.1. Физико-химические характеристики

Программа установления физико-химических характеристик, как правило, включает в себя определение класса, подкласса, строение легких цепей (каппа и (или) лямбда цепи) и первичной структуры моноклонального антитела.
По результатам секвенирования ДНК необходимо вывести аминокислотную последовательность и с помощью надлежащих методов (например, пептидного картирования, секвенирования аминокислот, масс-спектрометрического анализа) подтвердить ее экспериментально. Необходимо проанализировать вариацию N- и C-концевых последовательностей аминокислот (например, C-концевых лизинов).
Необходимо определить свободные сульфгидрильные группы и дисульфидные мостики, сохранность или правильность дисульфидных связей.
Необходимо установить содержание углеводов (нейтральные сахара, аминосахара и сиаловые кислоты). Кроме того, необходимо проанализировать структуру углеводных цепей, олигосахаридный профиль (профиль ветвления), участки гликозилирования и их занятость.
Как правило, моноклональные антитела имеют один участок N-гликозилирования на каждой тяжелой цепи, расположенный в Fc-фрагменте. Легкая цепь, как правило, не гликозилируется. Однако тяжелые цепи могут содержать дополнительные участки гликозилирования, поэтому необходимо установить их наличие или отсутствие. Необходимо описать структуру гликанов, уделив особое внимание степени маннозилирования, галактозилирования, фукозилирования и сиалилирования. Необходимо определить распределение основных имеющихся гликановых структур (чаще всего G0, G1 и G2).
С помощью подходящей методологии необходимо описать структуру моноклонального антитела высшего порядка.
 

4.3.2. Иммунологические свойства

Иммунологические свойства антител необходимо всесторонне охарактеризовать. В целях определения их аффинности, авидности и иммунореактивности (включая перекрестную реактивность с другими структурно гомологичными белками) необходимо провести анализ связывания антител с очищенными антигенами и определенными участками антигенов. Необходимо изучить непредусмотренную реактивность (цитотоксичность) для тканей человека, отличных от выбранных мишеней. Используя иммуногистохимические методики в соответствии с приложением к настоящей главе, необходимо установить перекрестную реактивность с тканями человека. В соответствующих случаях допускаются перекрестные ссылки на доклинический и (или) клинический разделы регистрационного досье.
При отсутствии должного обоснования необходимо идентифицировать области, определяющие комплементарность (гипервариабельные участки, CDR).
Необходимо определить эпитоп и молекулу, его несущую. Указанное должно включать в себя биохимическую идентификацию таких структур (например, белок, олигосахарид, гликопротеин, гликолипид) и все возможные исследования по установлению характеристик (аминокислотная последовательность, структура углеводов).
Необходимо изучить способность связываться с комплементом и активировать его и (или) иные эффекторные функции, даже если целевая биологическая активность не требует наличия таких функций.
 

4.3.3. Биологическая активность

С помощью исследований in vitro и (или) in vivo необходимо определить биологическую активность (то есть специфическую способность препарата оказывать определенный биологический эффект). Необходимо проанализировать механизм действия и значение (последствия) эффекторных функций препарата для его безопасности и эффективности.
Если эффекторная функция антител может являться частью механизма действия и (или) влиять на безопасность и эффективность препарата, необходимо представить подробный анализ АЗКЦ, цитотоксических свойств (например, апоптоза), способности связываться с комплементом и активировать его, прочие эффекторные функции, включая активность связывания с гамма Fc-рецепторами и неонатальными Fc-рецепторами.
 

4.3.4. Чистота, примеси и контаминаты

Как правило, выделяют несколько источников гетерогенности моноклональных антител (например, изменение C-концевого лизина, образование N-концевого пироглутамата, дезамидирование, окисление, изомеризация, фрагментация, образование нетипичных дисульфидных связей, N-связанный олигосахарид, гликирование), которые приводят к сложному профилю показателей чистоты (примесей), представляющему собой несколько молекулярных структур и вариантов. Такой профиль чистоты (примесей) необходимо оценить с помощью совокупности ортогональных методов и для соответствующих родственных вариантов предусмотреть индивидуальные или суммарные критерии приемлемости.
К таким методам, как правило, относятся определение физико-химических свойств, например, молекулярной массы или размера, профиля изоформ, коэффициента экстинкции, электрофоретических профилей, хроматографических данных и спектроскопических профилей. Кроме того, необходимо предложить подходящие методы для качественного и количественного анализа гетерогенности заряженных вариантов.
Используя комбинацию методов, необходимо должным образом охарактеризовать мультимеры и агрегаты. Образование в лекарственном препарате агрегатов, видимых и невидимых включений является важным и требует изучения и тщательного контроля при выпуске серий и в ходе исследований стабильности. В дополнение к фармакопейным испытаниям на механические включения в целях установления природы включений и их содержания могут потребоваться иные ортогональные аналитические методы.
Необходимо идентифицировать потенциальные производственные примеси (например, БКХ, ДНК клетки-хозяина, остаточное содержание питательных сред, остаточное содержание реактивов, использующихся на последующих этапах обработки) и в зависимости от обстоятельств проанализировать их качественно и (или) количественно.
Необходимо строго избегать и (или) должным образом контролировать содержание контаминантов, включающих в себя все привнесенные посторонние материалы, не являющиеся частью процесса производства (например, микроорганизмы, эндотоксины). При подозрении на наличие провоспалительных контаминантов неэндотоксиновой природы (например, пептидогликанов) необходимо провести дополнительные испытания (например, испытание на активацию моноцитов).
 

4.3.5. Количественное содержание

С помощью соответствующих физико-химических и (или) иммунохимических методик необходимо определить количественное содержание.
Необходимо подтвердить, что результаты испытания на содержание непосредственно коррелируют с результатами, полученными при испытании на биологическую активность. При наличии такой зависимости в информации о препарате или производственных процессах (например, фасовке) вместо меры биологической активности допускается использовать меру количественного содержания.
 

4.4. Спецификации

 
Спецификации являются составной частью общей стратегии контроля качества продукта, которые составляются для обеспечения его качества и постоянства, при этом продукт должен соответствовать спецификации. Необходимо разработать такие спецификации, которые учитывали бы показатели качества, оказавшиеся значимыми по результатам исследований по установлению характеристик. Выбор включаемых в спецификацию испытаний носит препаратспецифичный характер. Необходимо описать основания установления допустимых диапазонов для критериев приемлемости. В соответствии с главой 6 настоящих Правил необходимо установить критерии приемлемости и обосновать их, учитывая данные, полученные по результатам испытаний серий, изученных в доклинических и (или) клинических исследованиях, серий, использованных при подтверждении воспроизводимости процесса производства, данных результатов исследований стабильности и значимых данных по разработке.
 

4.4.1. Подлинность

Испытания на подлинность должны быть высоко специфичными и основываться на уникальности молекулярной структуры препарата и (или) иных специфичных свойствах (например, пептидное картирование, антиидиотипный иммуноанализ или иной подходящий метод). С учетом высокой аналогичности константных доменов различных антител в целях установления подлинности могут потребоваться несколько испытаний (физико-химических, биологических и (или) иммунохимических); такие испытания должны позволять различать прочие антитела, которые могут производиться на той же производственной площадке.
 

4.4.2. Чистота и примеси

В соответствии с разделом 4.3 настоящей главы профиль чистоты (примесей) моноклональных антител может быть сложным и требует анализа с помощью совокупности ортогональных методов, для которых необходимо установить индивидуальные и (или) суммарные критерии приемлемости по родственным вариантам. Например, в целях качественного и количественного выявления заряженных вариантов необходимо использовать методы разделения, основанные на гетерогенности заряда.
Необходимо включить хроматографические и (или) электрофоретические методы, способные обнаружить укорочение, диссоциацию и полимеризацию продукта, а также предложить для указанных показателей количественные пределы.
Необходимо уделить особое внимание подтверждению пригодности использованных аналитических методик для контроля содержания мультимеров и агрегатов.
Принимая во внимание, что гликозилирование может оказывать влияние на фармакокинетику препарата и изменять его иммуногенные свойства, для гликозилирования необходимо установить надлежащие критерии приемлемости. Кроме того, такой контроль в дальнейшем позволит подтверждать постоянство серий препарата.
Как следствие, необходимо тщательно подобрать испытания и критерии приемлемости гликозилирования (например, относительные количества G0, G1 и (или) G2 Fc-фрагментов, степеней гликозилирования, фукозилирования и сиалилирования), принимая во внимание предусмотренное и потенциальное влияния этого показателя на биологическую активность в клинической практике (например, наличие функциональных эффекторных функций, ненужных для реализации целевого механизма действия, гликозилирование Fab-фрагмента).
В стратегию контроля необходимо включить контроль значимых производственных примесей. В некоторых случаях, при должном подтверждении, контроль их содержания допускается осуществлять на промежуточном продукте, на соответствующем этапе производственного процесса. Для некоторых примесей, для которых показано, что с помощью процесса производства удается значительно сократить их содержание, стандартные испытания не требуются. Контроль остаточного белка A, БКХ, остаточной ДНК и иных потенциальных остаточных содержаний сред или очистки, как правило, является частью спецификации. Кроме того, такой контроль служит ценным источником информации по постоянству и функционированию процесса производства.
 

4.4.3. Активность

Активность (potency) – количественная мера биологической активности, основанная на показателе качества препарата, связанном с его значимыми биологическими свойствами. Соответствующая аналитическая методика определения активности должна являться частью спецификаций на активную фармацевтическую субстанцию и (или) лекарственный препарат и в идеальном случае должна отражать биологическую активность в клинической практике.
В отношении антител, клиническая активность которых зависит исключительно от связывающих (нейтрализующих) свойств, при достаточном обосновании допускается использовать аналитическую методику определения активности, определяющую связывание с мишенью (то есть методика связывания). Если для клинической активности необходимы эффекторные функции, необходимо использовать биологический метод количественного определения на основе клеток или иную методику, позволяющую определить эффекторные функции. Если биологический метод количественного определения на основе клеток неуместен или комбинация двух методов дает более точные результаты, следует использовать комбинацию двух отдельных методов: первый – с целью определения специфичности, второй – для определения эффекторной функции (например, активация комплемента, связывание с C1q, связывание с Fc-гамма-рецептором).
Несмотря на то что два вида методик определения активности (связывания и на основе клеток) зачастую дают сопоставимые результаты, такие методики не следует считать взаимозаменяемыми, поскольку некоторые свойства препарата могут не влиять на связывание с мишенью (например, гликозилирование, фрагментация), но влиять на дальнейшее распространение сигнала или экспрессию рецептора.
В целях подтверждения постоянства процесса производства значительную ценность представляет специфическая активность (биологическая активность на массу).
 

4.4.4. Количественное содержание

Используя подходящую методику, необходимо определить содержание фармацевтической субстанции, как правило, по содержанию (массе) белка.
 

4.4.5. Общие показатели

При необходимости следует изучить внешний вид, растворимость, pH, осмоляльность, извлекаемый объем, стерильность, бактериальные эндотоксины, стабилизатор и воду.
Содержание видимых и невидимых механических включений в лекарственном препарате должно соответствовать требованиям, предъявляемым Фармакопеей Союза.
 

5. Препараты на основе модифицированных моноклональных антител

 
Помимо интактных, немодифицированных моноклональных антител принципы, указанные в настоящих Правилах, могут быть применимы к иным производным от моноклональных антител препаратам (например, фрагменты антител (включая одноцепочечные вариабельные фрагменты (scFv)), гибридные белки, конъюгированные моноклональные антитела, биспецифичные антитела и радиоактивно меченые антитела). Однако их применимость будет определяться в индивидуальном порядке на основании свойств отдельного препарата.
 

Приложение

 
ПЕРЕЧЕНЬ ТКАНЕЙ ЧЕЛОВЕКА, РЕКОМЕНДУЕМЫХ ДЛЯ ИСПОЛЬЗОВАНИЯ В ИММУНОГИСТОХИМИЧЕСКИХ ИЛИ ЦИТОХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ ПЕРЕКРЕСТНОЙ РЕАКТИВНОСТИ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ
 
Настоящий перечень тканей человека позволяет отразить специфичность антител в иммуногистохимических или цитохимических исследованиях перекрестной реактивности и их клиническое практическое значение и включает в себя в том числе:
  • миндалину, тимус, лимфатический узел;
  • костный мозг, клетки крови;
  • легкие, печень, почки, мочевой пузырь, селезенку, желудок, включая подлежащие гладкие мышцы, кишечник;
  • поджелудочную железу, большую слюнную железу, щитовидную железу, паращитовидную железу, надпочечник, гипофиз;
  • головной мозг, периферический нерв;
  • сердце, поперечнополосатую мышцу;
  • яичник, яичко;
  • кожу;
  • кровеносные сосуды.