# МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

# ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Ионометрия

ОФС.1.2.1.0004.15

Взамен ГФ XII, ч.1, ОФС42-0048-07

Метод ионометрии основан на измерении активности (концентрации) ионоселективных (индикаторных) определяемых ионов cпомощью обладает электродов. Ионоселективный электрод избирательной чувствительностью к определенному виду ионов, от содержания которых зависит его потенциал. В основу ионометрии положен потенциометрического анализа, заключающийся в измерении разности потенциалов (электродвижущей силы) индикаторного ионоселективного электрода и электрода сравнения, потенциал которого постоянен.

Зависимость электродвижущей силы электродной системы от активности потенциалопределяющего иона описывается уравнением Нернста:

$$E = E_o + 2{,}303 \quad \frac{R \cdot T}{z \cdot F} \quad \text{lg a}$$
 (1),

где: E – разность потенциалов между измерительным электродом и электродом сравнения (электродвижущей силы), мB;

 $E_0$  – стандартное значение электродвижущей силы при a=1, mB;

R – универсальная газовая постоянная, Дж/(моль·К);

Т – абсолютная температура, К;

F – число Фарадея, Кл/моль;

z – заряд определяемого иона;

а – активность или эффективная концентрация свободных ионов

В

растворе, связанная с концентрацией соотношением:

$$a = f \cdot C \qquad (2),$$

где:

C — молярная концентрация, моль/л;

f – коэффициент активности.

Для очень разбавленных растворов коэффициент активности близок к единице и активность ионов равна концентрации.

Если коэффициент активности поддерживается постоянным, уравнение Нернста принимает вид:

$$E = E_0 + \frac{k}{z} \cdot \lg (f \cdot C)$$
 (3), где

 $k = 2,303 \frac{R \cdot T}{F}$  — коэффициент, который означает изменение электродвижущей силы на единицу изменения lg a, и может быть рассчитан по формуле при любой температуре:

$$k = [0,05916 + 0,000198 \cdot (t - 25^{\circ} C)]$$
 (4) и приведен в табл. 1.

Таблица 1 Значения k при различных температурах

| Температура, °С | k , B  |
|-----------------|--------|
| 15              | 0,0572 |
| 20              | 0,0582 |
| 25              | 0,0592 |
| 30              | 0,0602 |
| 35              | 0,0611 |

Коэффициент активности (f) считается постоянным, если при измерениях во всех анализируемых и калибровочных растворах поддерживается одинаковая ионная сила. Для создания постоянной ионной силы к раствору добавляют раствор индифферентного электролита (фоновый раствор) с концентрацией в 10-100 раз больше, чем суммарная концентрация других ионов в растворе, с тем, чтобы различные количества анализируемого иона не влияли на ионную силу раствора и коэффициент активности определяемого иона оставался постоянным.

Если 
$$E = E_0 + \frac{k}{z} \cdot \lg f = E_0'$$
 и  $S = \frac{k}{z}$ ,

где: S – крутизна электродной функции, то

$$E = E_o' + S \lg C = E_o' - S \cdot pC$$
 (5),

где: pC = - lgC.

Таким образом, при постоянной ионной силе раствора и постоянной температуре наблюдается линейная зависимость электродвижущей силы электродной системы от концентрации определяемого иона.

#### ИЗМЕРЕНИЕ АКТИВНОСТИ И КОНЦЕНТРАЦИИ ИОНОВ

Ионометрические измерения осуществляют с использованием ионометра (высокоомного вольтметра с входным сопротивлением по крайней мере в 100 раз большим, чем сопротивление используемых электродов), который включает в себя электродную систему и измерительный преобразователь.

В качестве ионоселективных электродов могут использоваться электроды с жидкой (пластифицированные электроды) или с твердой мембраной (монокристаллические, поликристаллические или стеклянные электроды), электроды с заряженными (положительно или отрицательно) или нейтральными подвижными носителями, сенсибилизированные электроды (электроды с ферментативной подложкой, газ-индикаторные электроды). Электродом сравнения служит, главным образом, хлорсеребряный электрод или каломельный электрод с соответствующими индифферентными соединительными жидкостями.

Показания прибора снимают в милливольтах или в единицах рX. Подготовка ионометра к работе и проведение измерений производятся согласно инструкциям, прилагаемым к прибору. Измерения выполняют при постоянной температуре  $\pm~0.5~^{\circ}$ С и постоянной ионной силе раствора. Помещают электроды в испытуемый раствор и снимают установившееся показание при медленном и постоянном перемешивании.

При частых измерениях периодически проверяют стабильность отклика и линейность градуировочного графика в диапазоне концентраций испытуемого раствора. В противном случае проверку проводят перед каждым измерением.

### 1. Метод градуировочного графика

Метод градуировочного графика заключается в построении графика зависимости электродвижущей силы электродной системы от логарифма концентрации стандартных растворов И последующем нахождении концентрации испытуемого раствора по измеренному в нем значению электродвижущей Градуировочный силы электродной системы. (калибровочный) график строится микропроцессором измерительного преобразователя автоматически на основе введенных в него значений электродвижущей силы электродной системы и соответствующих им значений рХ при калибровке иономера в стандартных растворах (двух и более). Подбор концентраций стандартных растворов должен соответствовать диапазону концентраций испытуемых растворов: крайние значения концентраций испытуемых растворов должны находиться внутри линейной области калибровочного графика. Значение рХ в испытуемом растворе находится автоматически с использованием градуировочного графика по измеренному значению электродвижущей силы электродной системы (E) – puc.1.

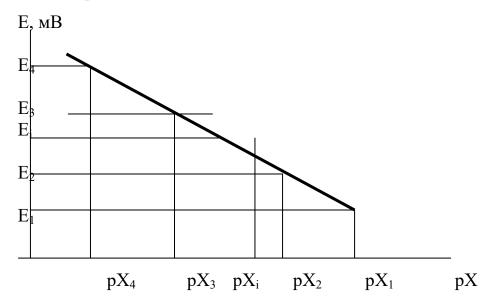



Рисунок 1. Градуировочный график зависимости электродвижущей силы электродной системы от концентрации потенциалопределяющего иона.

Поскольку в разбавленных растворах  $pX = - \lg C$ , значение молярной концентрации (моль/л) вычисляют по уравнению:

$$C = 10^{-pX}$$
 (6),

Значение массовой концентрации иона (г/л) рассчитывают, исходя из уравнения:

$$C = M \cdot 10^{-pX} \tag{7},$$

где: М – молярная масса иона, г/моль.

При наличии влияния других компонентов испытуемого раствора на потенциал ионоселективного электрода используют метод стандартных добавок.

# 2. Метод стандартных добавок

Метод применим в линейных областях калибровочной кривой.

# 2.1. Метод многократных добавок

В испытуемый раствор объемом V, приготовленный, как указано в фармакопейной статье, вводят несколько (не менее трех) порций объемом  $V_0$  (  $V_0 \leq 0.01 \text{*V}$ ) раствора с известной концентрацией определяемого иона, соблюдая условие неизменной ионной силы в растворе. Измеряют потенциал до и после каждой добавки и вычисляют разность  $\Delta E$  между потенциалом, измеренным после добавки раствора с известной концентрацией, и исходным потенциалом испытуемого раствора. Полученная величина связана с концентрацией определяемого иона уравнением:

$$\Delta E = S \cdot \lg \left(1 + \frac{C_0 \cdot V_0}{C \cdot V}\right), \quad (8)$$

или

$$10^{\frac{\Delta E}{S}} \frac{C_0 \cdot V_0}{C \cdot V}, \qquad (9)$$

где: V – объем испытуемого раствора, л;

C — молярная концентрация определяемого иона в испытуемом растворе, моль/л;

 $V_{0.}$  — добавленный объем стандартного раствора, л;

 $C_{0.}$  – концентрация определяемого иона в стандартном растворе, моль/л;

S — крутизна электродной функции, определяемая экспериментально при постоянной температуре измерением разности потенциалов двух стандартных растворов, концентрации которых отличаются в 10 раз и соответствуют линейной области калибровочной кривой, мВ.

Строят график зависимости  $10^{\frac{\Delta E}{S}}$  от объема добавки  $V_{0.}$  и экстраполируют полученную прямую до пересечения с осью абсцисс. В точке пересечения концентрация испытуемого раствора определяемого иона выражается уравнением:

$$C = \frac{C_0 \cdot V_0}{V} \tag{10}$$

### 2.2 Метод однократной добавки

К объему V испытуемого раствора, приготовленного как описано в фармакопейной статье, прибавляют объем  $V_0$  стандартного раствора с концентрацией  $C_0$ . Готовят контрольный раствор в тех же условиях. Измеряют потенциалы испытуемого и контрольного раствора до и после добавления стандартного раствора. Вычисляют концентрацию С анализируемого иона, используя следующее уравнение и делая необходимые поправки на контрольный раствор:

$$C = \frac{C_{0.} \cdot V_{0.}}{10^{\frac{\Delta E}{S}} \cdot (V + V_{0.}) - V}$$
 (11)

где: V – объем испытуемого или контрольного раствора, л;

С – концентрация определяемого иона в испытуемом растворе, моль/л;

 $V_0$  – добавленный объем стандартного раствора, л;

 $C_0$  — концентрация определяемого иона в стандартном растворе, моль/л;

 $\Delta E$  – разность потенциалов, измеренных до и после добавки, мВ; крутизна электродной функции, определяемая экспериментально при постоянной температуре измерением разности потенциалов двух стандартных растворов, концентрации которых отличаются в 10 раз и соответствуют линейной области калибровочной кривой, мВ.

# 3. Потенциометрическое определение рН

Водородным показателем рН, характеризующим концентрацию ионов водорода в водных растворах, называется отрицательный десятичный логарифм активности ионов водорода

$$pH = -\lg a_H^{+} \tag{12}$$

Потенциометрическое определение рН заключается в измерении электродной электродвижущей силы системы, где качестве ионоселективного электрода используют чувствительный к ионам водорода (обычно стеклянный), в качестве электрода электрод сравнения стандартный электрод с известной величиной потенциала (насыщенный каломельный или хлорсеребряный электроды). На практике для измерения рН применяют метод градуировочного графика. рН испытуемого раствора связан с рН стандартного раствора следующим уравнением:

$$pH = pH_S - \underbrace{\frac{E - E_S}{k}}, \qquad (13)$$

где: Е – потенциал электрода в испытуемом растворе, мВ;

 $E_{s}$  – потенциал того же электрода в растворе с известным значением рН (стандартном растворе), мВ;

k – коэффициент, который означает изменение электродвижущей силы на единицу изменения рН, мВ;

pHs – pH стандартного раствора.

Прибор. В качестве прибора для потенциометрического определения рН используют иономеры или рН-метры с чувствительностью не менее 0,05 единиц рН или 3 мВ. Калибровка приборов производится по стандартным

буферным растворам, приведенным в общей фармакопейной статье «Буферные растворы».

Методика. Все измерения проводят при одной и той же температуре в интервале от 20 до 25 °C, если нет других указаний в фармакопейной статье. В табл. 2 приведена зависимость значений рН от температуры для различных стандартных буферных растворов, используемых для калибровки прибора. Для приготовления указанных растворов могут быть использованы стандарттитры для приготовления буферных растворов — рабочих эталонов рН (фиксаналы) промышленного производства.

Таблица 2 рН стандартных буферных растворов при различных температурах

| Темпера                   | 0,05 M   | Насыще   | 0,05M   | 0,05M   | 0,025M  | 0,0087M | 0,01M    | 0,025M  | Насыще   |
|---------------------------|----------|----------|---------|---------|---------|---------|----------|---------|----------|
| тура, °С                  | раствор  | нный     | раствор | раствор | раствор | раствор | раствор  | раствор | нный     |
|                           | калия    | при 25°С | калия   | калия   | калия   | калия   | натрия   | натрия  | при 25°С |
|                           | тетраокс | раствор  | дигидро | гидрофт | фосфата | фосфата | тетрабор | карбона | раствор  |
|                           | алата    | калия    | цитрата | алата   | однозам | однозам | ата      | та и    | кальция  |
|                           |          | гидротар |         |         | ещенног | ещенног |          | 0,025M  | гтдрокси |
|                           |          | трата    |         |         | о и     | о и     |          | раствор | да       |
|                           |          |          |         |         | 0,025M  | 0,0303M |          | натрия  |          |
|                           |          |          |         |         | раствор | раствор |          | гидрока |          |
|                           |          |          |         |         | динатри | динатри |          | рбоната |          |
|                           |          |          |         |         | Я       | Я       |          |         |          |
|                           |          |          |         |         | гидрофо | гидрофо |          |         |          |
|                           |          |          |         |         | сфата   | сфата   |          |         |          |
|                           |          |          |         |         | безводн | безводн |          |         |          |
|                           |          |          |         |         | ого     | ого     |          |         |          |
| 15                        | 1,67     |          | 3,80    | 4,00    | 6,90    | 7,45    | 9,28     | 10,12   | 12,81    |
| 20                        | 1,68     |          | 3,79    | 4,00    | 6,88    | 7,43    | 9,23     | 10,06   | 12,63    |
| 25                        | 1,68     | 3,56     | 3,78    | 4,01    | 6,87    | 7,41    | 9,18     | 10,01   | 12,45    |
| 30                        | 1,68     | 3,55     | 3,77    | 4,02    | 6,85    | 7,40    | 9,14     | 9,97    | 12,29    |
| 35                        | 1,69     | 3,55     | 3,76    | 4,02    | 6,84    | 7,39    | 9,10     | 9,93    | 12,29    |
| <u>ΔpH</u> <sup>(1)</sup> | +0,001   | -0,0014  | -0,0022 | +0,0012 | -0,0028 | -0,0028 | -0,0082  | -0,0096 | -0,034   |
| Δt                        |          |          |         |         |         |         |          |         |          |

<sup>(1) –</sup> изменение рН на градус Цельсия.

Если необходимо, учитывают температурные поправки в соответствии с инструкцией предприятия-производителя. Прибор калибруют при помощи буферного раствора калия гидрофталата (первичный стандарт) и одного из буферных растворов с другим значением рН (предпочтительно одного из приведенных в табл. 2). Показания прибора для третьего буферного раствора

с промежуточным значением pH не должны отличаться больше, чем на 0,05 единиц pH от табличного значения pH этого раствора. Электроды прибора погружают в испытуемый раствор и измеряют pH в тех же условиях, что и для буферных растворов.

Все испытуемые растворы и стандартные буферные растворы должны быть приготовлены на воде очищенной, не содержащей углерода диоксид, для чего перед употреблением ее необходимо прокипятить. Вода, не содержащая углерода диоксид, должна иметь рН 5,8 - 7,0.

### Приготовление стандартных буферных растворов

0.05~M раствор калия тетраоксалата. 12,61 г  ${\rm KC_4H_3O_8\cdot~2H_2O}$  растворяют в воде и доводят объем раствора тем же растворителем до  $1000.0~{\rm Mm}$ .

Насыщенный при 25 °C раствор калия гидротартрата. Избыток  $KC_4H_5O_6$  энергично встряхивают с водой при температуре 25 °C в течении 30 мин. Фильтруют или декантируют. Раствор используют свежеприготовленным.

0.05~M раствор калия дигидроцитрата. 11,41 г  $KC_6H_7O_7$  растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл. Раствор используют свежеприготовленным.

0.05~M раствор калия гидрофталата.  $10.13~\mathrm{F}$   $\mathrm{KC_8H_5O_4}$ , предварительно высушенного при температуре от  $110~\mathrm{дo}~135~\mathrm{^{\circ}C}$  до постоянной массы, растворяют в воде и доводят объем раствора тем же растворителем до  $1000.0~\mathrm{m}$ л.

0,025~M раствор калия фосфата однозамещенного и 0,025~M раствор динатрия гидрофосфата безводного.  $3,39~\Gamma~KH_2PO_4$  и  $3,53~\Gamma~Na_2HPO_4$ , предварительно высушенных в течение двух часов при температуре от  $110~\rm дo$   $130~\rm C$  до постоянной массы, растворяют в воде и доводят объем раствора тем же растворителем до  $1000,0~\rm MJ$ .

0,0087 М раствор калия фосфата однозамещенного и 0,0303 М раствор динатрия гидрофосфата безводного. 1,18 г КН<sub>2</sub>PO<sub>4</sub> и 4,30 г

 $Na_2HPO_4$ , предварительно высушенных при температуре от 110 до 130 °C, растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.

0.01~M~ раствор натрия тетрабората. 3.80~ г  ${\rm Na_2B_4O_7~\cdot~10H_2O}$  растворяют в воде и доводят объем раствора тем же растворителем до 1000.0 мл. Хранят, защищая от углерода диоксида.

0.025~M раствор натрия карбоната и 0.025~M раствор натрия гидрокарбоната.  $2.64~\Gamma$   $Na_2CO_3$  и  $2.09~\Gamma$   $NaHCO_3$  растворяют в воде и доводят объем раствора тем же растворителем до 1000.0~Mл.

При измерении рН в неводных и смешанных растворителях, а также в некоторых коллоидных системах, следует иметь в виду, что полученные значения рН являются условными.

**Примечание.** Буферные растворы хранят в хорошо закрытых склянках нейтрального стекла в течение 3-х мес. При образовании осадков и видимых изменений буферные растворы не подлежат использованию.