МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Определение содержания остаточных пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах ОФС.1.5.3.0011.15

Вводится впервые

общей Требования настоящей фармакопейной статьи распространяются на лекарственное растительное сырьё и лекарственные растительные препараты, независимо от формы выпуска, на переработки лекарственного растительного производстве сырья, при лекарственных растительных препаратов, хранении, транспортировании, закупке, ввозе в страну, сертификации и реализации (далее обращение лекарственных лекарственного растительного сырья И растительных препаратов).

Содержание остаточных пестицидов, как правило, определяют в лекарственном растительном сырье и лекарственных растительных препаратах, получаемых от культивируемых лекарственных растений.

Термины и определения

В настоящей общей фармакопейной статье использованы следующие определения.

Пестициды – химические или биологические препараты, используемые для борьбы с вредителями и болезнями растений, сорными растениями, вредителями хранящейся сельскохозяйственной продукции, бытовыми вредителями и внешними паразитами животных, а также для регулирования роста растений, предуборочного удаления листьев (дефолианты), предуборочного подсушивания растений (десиканты).

Остаточные пестициды – вещества, включающие в себя остаточное

количество пестицидов и любые производные пестицидов (продукты конверсий, реакций, метаболиты, примеси).

Проба для определения остаточных пестицидов и тяжелых металлов— определенное количество пробы, выделенной методом квартования из объединенной пробы.

Eдиницы измерения — мг/кг — количество мг пестицида в 1 кг лекарственного растительного сырья или лекарственного растительного препарата.

Средства измерений включают необходимые для определения содержания пестицидов приборы и методики выполнения измерений, имеющие нормированные метрологические характеристики.

Контроль на содержание остаточных количеств пестицидов – определение соответствия исследуемых объектов требованиям нормативной документации.

Общие положения

Для обеспечения достоверности полученных результатов анализируемое на содержание остаточных пестицидов лекарственное растительное сырье/препараты, как правило, должно иметь влажность не более 15 %.

В лекарственном растительном сырье и лекарственных растительных препаратах определяют содержание остаточных пестицидов, в том числе хлорсодержащих: гексахлорциклогексана (ГХЦГ) и его изомеров (α-, β-, γ-ГХЦГ), дихлордифенилтрихлорметилметана (ДДТ) и его метаболитов (ДДД – дихлордифенилдихлорметилметана, ДДЕ – дихлордифенилхлорметилметана, ДДЕ – дихлордифенилхлорэтилена), гексахлрбензол (ГХБ), алдрина, гептахлора и других.

Основные этапы определения содержания остаточных пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах:

- отбор пробы для определения остаточных пестицидов, тяжелых металлов и мышьяка (ОФС «Отбор проб лекарственного растительного

сырья и лекарственных растительных препаратов»);

- подготовка пробы к определению;
- определение содержания остаточных пестицидов в испытуемых образцах;
 - обработка результатов измерений;
 - определение соответствия сырья допустимым нормам.

Пробы должны анализироваться немедленно, во избежание возможного разрушения остатков пестицидов. Если это невозможно, пробы сохраняют в герметичных контейнерах, пригодных для контакта с пищевыми продуктами, при температуре ниже $0\,^{\circ}$ С в защищенном от света месте.

Все реактивы и растворители не должны содержать примесей, особенно пестицидов, которые могут влиять на результаты анализа.

Используемые аналитические методы должны удовлетворять требованиям ОФС «Валидация аналитических методик» и следующим критериям:

- выбранный метод является подходящим для комбинации остаточный пестицид/лекарственное растительное сырье;
- при интерпретации результатов необходимо учитывать влияние некоторых компонентов (например, влияние дисульфида у растений семейства Крестоцветных);
- концентрации испытуемого раствора и раствора сравнения, а также настройки аппаратуры должны быть такими, чтобы аналитический сигнал, используемый для количественного анализа пестицидов, находился в пределах линейного диапазона используемого детектора;
 - каждый пестицид извлекается в диапазоне 70-110 %;
- повторяемость и воспроизводимость метода: относительное стандартное отклонение (%) не должно превышать значений, указанных в табл. 1.

Для определения содержания пестицидов в пробе используется газовая (ГХ/МС) или жидкостная (ВЭЖХ/МС) хроматография с масс-

спектрометрическим детектором. При отсутствии масс-спектрометрического детектора онжом использовать электронно-захватный или другие селективные детекторы. Определение проводится В соответствии ОФС требованиями «Хроматография», «Газовая хроматография», «Высокоэффективная жидкостная хроматография» и «Масс-спектрометрия».

Таблица 1 — Аналитические характеристические параметры в различных диапазонах концентрации вещества

Диапазон	Повторяемость	Воспроизводимость
концентрации	(относительное стандартное	(относительное
вещества, мг/кг	отклонение, %)	стандартное
		отклонение, %)
0,001-0,01	30	60
>0,01-0,1	20	40
>0,1-1	15	30
>1	10	20

Лекарственные растительные препараты получают из лекарственного растительного сырья, которое соответствует по содержанию остаточных пестицидов требованиям настоящей общей фармакопейной статьи. Определение содержания остаточных пестицидов в лекарственных растительных препаратах проводят в случае обоснованных претензий.

Поставщик лекарственного растительного сырья должен предоставить протокол анализа на поставляемую партию лекарственного растительного сырья, в котором указываются использованные пестициды и содержание остаточных пестицидов.

Порядок отбора проб

Отбор проб от партии сырья/серии препарата проводят в соответствии с требованиями ОФС «Отбор проб лекарственного растительного сырья и лекарственных растительных препаратов» и настоящей статьей.

Отбор проб для проведения испытаний осуществляют в соответствии с действующими санитарно-гигиеническими правилами и условиями,

исключающими дополнительное загрязнение сырья.

Определение остаточных пестицидов (хлорсодержащих)

Подготовка проб к анализу

Пробы лекарственного растительного сырья/препарата измельчают и просеивают через сито с размером отверстий 0,5 мм. Затем около 5 г навеска) помещают сырья/препарата (точная коническую колбу вместимостью 100 мл, прибавляют 100 мкл стандартного раствора внутреннего стандарта с общей концентрацией 1 мкг/мл и 50 мл перегнанного гексана, перемешивают на магнитной мешалке в течение 1 ч обратного использованием холодильника. cполученное извлечение отфильтровывают через стекловату и проводят повторную экстракцию 30 мл гексана. Остаток на фильтре промывают 30 мл гексана и промывную жидкость объединяют с полученными извлечениями. К объединенному извлечению добавляют натрия сульфат безводный в соотношении 1:10 и выдерживают 1-1,5 ч, а затем упаривают на роторном вакуумном испарителе до объема 10-15 мл.

В делительную воронку вместимостью 100 мл помещают 10-15 мл полученного объединенного извлечения и прибавляют 20-25 мл серной кислоты концентрированной. Содержимое делительной воронки осторожно встряхивают 5-10 раз и оставляют до расслоения фаз, после чего нижний слой (кислотный) отбрасывают. Очистку повторяют несколько раз до получения бесцветного слоя серной кислоты. Очищенные извлечения нейтрализуют натрия гидрокарбоната раствором 0,5 М и промывают водой очищенной до нейтральной реакции промывных вод, после чего извлечения через колонку (длиной 10 c_{M} И диаметром последовательно заполненную алюминия оксидом (высота слоя 3 см) и натрия сульфатом безводным (высота слоя 3 см). Колонку промывают 20 мл метиленхлорида. Полученное очищенное извлечение упаривают на роторном вакуумном испарителе досуха. Сухой остаток растворяют в 1 мл ацетона.

АЛЬТЕРНАТИВНЫЙ СПОСОБ ПРОБОПОДГОТОВКИ

Для проведения анализа может быть использован альтернативный способ пробоподготовки.

Измельчают около 50 г лекарственного растительного сырья или лекарственного растительного препарата (проба для определения остаточных пестицидов, тяжелых металлов и мышьяка) и просеивают через сито с размером отверстий 0,5 мм. Затем помещают 10 г (точная навеска) измельченного образца в тефлоновую пробирку для центрифугирования вместимостью 50 мл, добавляют 10 мл ацетонитрила для хроматографии, тщательно встряхивают в течение 1 мин, добавляют 4 г безводного магния сульфата, 1 г натрия хлорида, тщательно встряхивают в течение 1 мин. Затем экстракт центрифугируют в течение 3 мин при 5000 об/мин. После центрифугирования из пробирки из верхнего слоя переносят аликвоту объемом 6 мл в тефлоновую пробирку для центрифугирования вместимостью 15 мл, содержащую 150 мг сорбента, представляющего собой смесь первичных и вторичных аминов, и 950 мг магния сульфата безводного, и снова центрифугируют в течение 3 мин при 5000 об/мин. Полученную надосадочную жидкость фильтруют через фильтр с размером пор 0,45 мкм. 1,5 мл полученного фильтрата переносят в хроматографическую виалу, содержащую 15 мкл муравьиной кислоты раствора 5 % в ацетонитриле (для стабилизации экстракта). Проводят определение содержания остаточных пестицидов методом ГХ/МС или ВЭЖХ/МС.

В качестве внутреннего стандарта может быть использован трифенилфосфат. Его добавляют в начальной стадии пробоподготовки одновременно с ацетонитрилом в концентрации 1 мкг/мл для ВЭЖХ/МС или 10 мкг/мл для ГХ/МС.

Могут быть использованы другие методики пробоподготовки при условии их валидации.

Проведение измерений

Хроматомасс-спектрометрический анализ полученных растворов

проводят на газовом хроматографе с масс-селективным детектором с использованием стандартных веществ (стандартный образец состава: α -гексахлорциклогексан, γ -гексахлорциклогексан, ДДТ, ДДЕ, ДДД, альдрин, гептахлор), а также внутреннего стандарта — 4,4'-дибромдифенила.

Для анализа используют 30 м кварцевую капиллярную колонку HP-5MS (сополимер 5% дифенила и 95% диметилсилоксана) с внутренним диаметром 0,25 мм и толщиной пленки неподвижной фазы 0,3 мкм или любую аналогичную. Анализ осуществляют при условиях, указанных в табл. 2.

Масс-спектры регистрируют при ионизации электронным ударом с энергией ионизации 70 эВ. Скорость сканирования должна составлять 1 скан/с при диапазоне сканирования 40-600 а.е.м.

Таблица 2 — Условия хроматомасс-спектрометрического анализа остаточных пестицидов (хлорсодержащих) на колонке HP-5MS

Т _{нач.} , °С	v, °С/мин	Тконеч., °С	Т _{исп.} , °С	T _{инт.} , °С	V, мкл
70	10	300	280	280	1

Примечание: $T_{\text{нач.}}$ — начальная температура термостата колонки (выдержка 4 мин.); v — скорость линейного нагрева колонки; $T_{\text{конеч}}$ — конечная температура колонки (выдержка 5 мин.); $T_{\text{исп}}$ — температура испарителя; $T_{\text{инт.}}$ — температура интерфейса; V, мкл — объем вводимой пробы.

Хроматомасс-спектрометрический анализ проводят в режиме селективного детектирования индивидуальных ионов с идентификацией пестицидов по характеристическим ионам и времени удерживания с использованием растворов стандартных образцов (табл. 3).

Таблица 3 — Хроматографические и масс-спектрометрические данные анализа растворов стандартных образцов хлорорганических пестицидов (ХОП) и полихлорбифенилов (ПХБ)

Наименование	Время	Характеристические	Относительное
ХОП или ПХБ	удерживания,	ионы, m/z	время
	МИН		удерживания
α-ГХЦГ	17,26		0,848
β-ГХЦГ	17,82	219, 183, 217, 181	0,874
γ-ГХЦГ	17,96		0,881

Наименование	Время	Характеристические	Относительное
ХОП или ПХБ	удерживания,	ионы, m/z	время
	МИН		удерживания
ДДТ	23,49	235, 237, 165	1,152
ДДД	22,80	255, 257, 105	1,118
ДДЕ	22,02	318, 246, 248	1,080
Альдрин	20,14	263, 298, 66	0,988
Гептахлор	19,45	272, 274, 339, 237	0,954
4,4'-Дибром-	20,39	312, 310, 314, 152	1,000
дифенил			

Примечание: Данные представлены для колонки HP-5MS.

Критериями идентификации являются:

- времена удерживания, которые не должны отличаться более чем на 0,5 мин от времени удерживания стандартного вещества;
- относительные интенсивности пиков характеристических ионов на реконструированной хроматограмме не должны отличаться более чем на 20% от относительной интенсивности этих пиков в масс-спектре стандартного вещества, полученного на данной хроматомасс-спектрометрической системе;
 - синхронность максимумов пиков характеристических ионов;
 - соотношение сигнал/шум, которое должно быть не менее 3:1.

Условия проведения измерений могут быть иными при использовании других детекторов, при этом методика должна быть валидирована.

Обработка результатов измерений

Содержание пестицидов в лекарственном растительном сырье/препарате рассчитывают методом внешнего стандарта, в качестве которого используют растворы стандартных веществ определяемых соединений. Для количественной оценки используют пробы, извлечение из которых внутренних стандартов составляет 70-110 %. Рассчитывают среднее значение из трех измерений площадей пиков анализируемых веществ.

Количество определяемого компонента (C_{ucn}) в нг/г или нг/мл вычисляют по формуле:

$$Cucn = \frac{S}{Scm \cdot P(V)} \cdot Ccm - Cконтр$$
,

где $C_{\kappa o \mu m p}$ — концентрация определяемого соединения в контрольной пробе, $\mu \Gamma / \Gamma$ или μ

S — площадь пика определяемого соединения на хроматограмме испытуемого раствора;

 C_{cm} – концентрация определяемого соединения в стандартном растворе;

 S_{cm} — площадь пика определяемого соединения на хроматограмме стандартного раствора;

P(V) — навеска в г или объем пробы в мл.

Для перевода концентрации в мг/кг полученное значение следует разделить на 1000.

Определение соответствия остаточных пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах допустимым нормам

Пределы допустимого содержания остаточных хлорсодержащих пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах не должны превышать значения, указанные в табл. 4.

Таблица 4 — Пределы допустимого содержания остаточных пестицидов (хлорсодержащих) в лекарственном растительном сырье и лекарственных растительных препаратах

Вещество	Пределы допустимого	
	содержания, мг/кг	
Гексахлорциклогексан и	0,1	
его изомеры (в сумме)		
ДДТ и его метаболиты (в	0,1	
сумме)		
Алдрин	Не допускается	
Гептахлор	Не допускается	

Если нет других указаний в фармакопейной статье, количество других остаточных пестицидов не должно превышать значений предельно допустимого содержания, указанных в табл. 5.

Таблица 5 — Пределы допустимого содержания остаточных пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах

N	Вещество	Пределы допустимого
Π/Π		содержания, мг/кг
1	Азинфос-метил	1,0
2	Азинфос-этил	0,1
3	Алахлор	0,02
4	Ацефат	0.1
5	Бромид, неорганический (в пересчете на бромид ион)	50
6	Бромофос-метил	0.05
7	Бромофос-этил	0,05
8	Бромпропилат	3,0
9	Винклозолин	0,4
10	Гексахлорбензол	0,1
11	Дельтаметрин	0,5
12	Диазинон	0,5
13	Дихлофлуанид	0,1
14	Дихлорфос	1,0
15	Дикофол	0,5
16	Диметоат и ометоат (в сумме)	0,1
17	Дитиокарбаматы (в пересчете на CS ₂)	2,0
18	Квиналфос	0,05
19	Квинтоцен (в сумме с пентахлоранилином и	1,0
	метилпентахлорфенилсульфидом)	
20	Малатион (в сумме с малаоксоном)	1,0
21	Мекарбам	0,05
22	Метакрифос	0,05
23	Метамидофос	0,05
24	Метидатион	0,2
25	Метоксихлор	0,05
26	Мирекс	0,01
27	Монокротофос	0,1
28	Паратион-метил и параоксон-метил (в сумме)	0,2
29	Паратион-этил и параоксон-этил (в сумме)	0,5
30	Пендиметалин	0,1
31	Пентахлоранизол	0,01
32	Перметрин и изомеры (в сумме)	1,0
33	Пиперонилбутоксид	3.0
34	Пиретрум (цинерин I, цинерин II, джасмолин I,	3,0
	джасмолин II, пиретрин I и пиретрин II в сумме)	
35	Пиримифос-метил и с N-дезэтил-	4,0
2.5	пиримифос-метил в сумме	2.25
36	Пиримифос-этил	0,05
37	Протиофос	0,05
38	Профенофос	0,1
39	Процимидон	0,1
40	C-421	0,02
41	Текназен	0,05

Продолжение таблицы 5

N	Вещество	Пределы допустимого
п/п		содержания, мг/кг
42	Тетрадифон	0,3
43	Фенвалерат	1,5
44	Фенитротион	0,5
45	Фенпропатрин	0,03
46	Фенсульфотион (в сумме)	0,05
47	Фентион (в сумме)	0,05
48	Фенхлорофос (сумма фенхлорофоса и	0,1
	фенхлорофосоксона)	
49	τ-Флувалинат	0,05
50	Флуцитринат	0,05
51	Фонофос	0,05
52	Фозалон	0,1
53	Фосмет	0,05
54	Хлордан (сумма цис-, транс- и оксихлордана)	0,05
55	Хлорпирифос-метил	0,1
56	Хлорпирифос-этил	0,2
57	Хлортал-диметил	0,01
58	Хлорфенвинфос	0,5
59	λ-Цигалотрин	1,0
60	Циперметрин и изомеры (в сумме)	1,0
61	Цифлутрин (в сумме)	0,1
62	Эндосульфан (изомеры и эндосульфана сульфат в сумме)	3,0
63	Эндрин	0,05
64	Этион	2,0
65	Этримфос	0,05

Значение пределов допустимого содержания остаточных пестицидов в лекарственном растительном сырье и лекарственных растительных препаратах (ПДСОП $_{\rm ЛРС}$), не включенных в табл. 5, рассчитывают по формуле с учетом значения уровня допустимого суточного потребления вещества, рекомендованного ФАО/ВОЗ, и величины дозы суточного потребления лекарственного растительного сырья/препарата:

ПДСОП
$$_{\text{ЛРС}} = \frac{ ДСП \cdot M}{MCД \cdot 100}$$

где ДСП – допустимое суточное потребление вещества* в мг на кг массы тела;

M – масса тела, кг (60 кг);

МСД – суточная доза лекарственного растительного сырья, кг;

100 - фактор потребления**.

Значение предельно допустимого содержания остаточных пестицидов в

лекарственном растительном препарате (ПДСО $\Pi_{\text{ЛРП}}$) рассчитывают по формуле:

1)
$$\ni \le 10$$
 ПДСОП_{ЛРП} = ПДСОП _{ЛРС} · Э,

$$2) \ni > 10$$

$$\Pi$$
ДСО $\Pi_{\Pi P\Pi} = \frac{ ДС\Pi \cdot M \cdot Э}{ MCД\Pi \cdot 100}$

где ДСП - допустимое суточное потребление вещества* в мг на кг массы тела;

M – масса тела в кг (60 кг);

100 - фактор потребления**;

Э – фактор экстракции определяется экспериментально, как соотношение между количеством сырья и количеством полученного препарата;

 $MCД\Pi$ — суточная доза лекарственного растительного препарата в кг. Примечания:

- * как опубликовано Организацией по продовольствию и сельскому хозяйству ВОЗ;
- ** относится к требованию BO3 о том, что количество остаточных пестицидов, потребляемых из ЛРС, не должно превышать 1% от общего количества потребляемых пестицидов.

Если в ходе анализа установлено превышение допустимых норм остаточных пестицидов, организация, проводившая анализ, должна поставить в известность производителя готовой продукции и оптовое или розничное предприятие, через которое данное лекарственное растительное сырье или лекарственный растительный препарат поступил на реализацию.